一位特级教师的期末总复习手记
图 | 废梁
三年级的一位数学老师在总复习前夕病假停课,我顶替她带着孩子们开始了总复习之旅。
复习结束,我请学生谈一谈复习体会。孩子们都说,我上课和原来的老师不一样。
我不知道他们的“不一样”有着怎样的含义,但是,回顾两个星期的期末复习,可以记载的东西还真不少,除去具体的复习细节和内容,我感觉到有一种意识非常强烈,那就是,努力让复习课能对孩子们的数学学习充满着“生长”的力量。
试卷讲评部分
学好数学得有起码的数学感觉
接手三年级的总复习时,正好赶上学生进行了第9、10、11三个单元的综合考查。在批阅学生答卷时,我发现了很多不该发生的甚至是荒唐、离奇的答题错误。比如:
250米+750米=(1000 )千米
一个集装箱重7(千克)
数学书的封面长2(平方分米)
王伯伯用70米长的篱笆靠着墙围了一个长方形的养鸡场(给出图示),这个养鸡场的面积是多少?
70÷2=35(米) 35-13=22(米) 35×22= 770(平方米)
看到这些答案后,或许你会想,“这些孩子真是太粗心了!”我倒感觉学生答题未必是太随意,或许他们只是缺乏对数学问题起码的感知罢了。
于是,试卷讲评时我就围绕“学好数学要有起码的数学感觉!“展开。
三年级数学和一二年级的区别在哪里?
我首先和学生谈的是,大家都是三年级的学生了,学习的是三年级的数学。三年级数学和一二年级的区别在哪里呢?
最主要的就是从一步思维向两步思维过渡,也就是说解决实际问题时通常要经过“先……再……”的思考过程,不同于一二年级做“1+1=?”可以直接看出结果。
像“250米+750米=(1000 )千米”的错误,就是只算了250+750=?,而忽视了后面还要进行单位的转化这一步骤,同学们将两步思考变成了一步。
当然,等大家升到四年级、五年级后,我们在解决问题时,往往还要经过“先……再……最后……”的思考过程,才能完整、有序地解决问题。
我们学习数学,一定要有数学的感觉!
什么是“数学的感觉”?就是对题目中所讲述的内容,要有最起码的敏感,能联系所学的知识正确地解决问题。
比如,谈到“集装箱”,你总要想起“集装箱”是什么样子的,能将它和自己熟悉的大宗物品进行比较,看看选择怎样的重量单位最合适。
如果不熟悉集装箱,可以将学过的三个重量单位进行对比:7吨、7千克、7克分别有多重呢?哪一个更合适呢?
再比如,从数学的角度来研究一样东西,可以有很多的研究角度。像研究数学书,我们可以研究它的面积,也可以研究它的长度,甚至还可以研究它的价格。关键在于你要抓住题目中需要你思考什么问题?解决什么实际问题?如果同学们仅仅依靠自己的直觉来解题,是一种极不负责任的态度,也可以说对数学的敏感性很差。所以,要想学好数学,我们首先要培养自己对数学的感觉。
数学学习中,经常要解决实际问题
什么是实际问题?就是你所面对的现实的问题。比如,长方形和正方形的面积,我们可能在考试前的学习过程中练习过了成百上千道实际问题,但是,当你在答卷时,仍然要面对你所研究的问题从新思考。
用篱笆围一个长方形的养鸡场,围的方法各种各样,但关键是我们要弄明白题目中是怎么围的呢?70米的篱笆变成了长方形的什么?一周的长度吗,还是三条边的长度?我们不能只顾着脑子里想到的方法,而不去理解实际题目的意思。这样的学习是很危险的。
我的思考:
1.为什么低年级数学不错的学生,到了中年级不适应?
到了中年级,学生的思维水平正处在形象思维向逻辑思维、单步思维向多步思维过渡的阶段。
很多学生低年级数学学得不错,但到了中年级就表现出明显的不适应,就是因为他们的思维品质还没有开始进行这种跨越——想到什么就写什么,用眼睛看看题目就期望能直接写出答案,缺少逻辑性的思维层次,没有简单的应对策略。
这种跨越,固然需要一个不断熏染、累积、升华、顿悟的过程。但是,数学老师应该有这样一种引导、点拨、甚至是告诉的任务。尤其是联系具体问题的解决和学生中出现的错误,进行恰到好处的强化,对学生形成理性思考和逻辑思维是很有好处的。
2.数学并不拒绝“一定的告诉”,关键是怎么告诉?
告诉的背后要让学生明白什么?告诉具有怎样生长的力量?这对于中年级的数学教学,对于培养学生数学的感觉,甚为重要!
培养学生对数学的感觉是一个很深奥的话题,可是,它又是一个很现实、很深刻的话题。
学生小的时候,我们不一定能感觉到这种“感觉”的作用和神奇,但要想走进数学的腹地,成为一个真正懂数学、会学数学的人,这方面的引导却应该如春风化雨般融入在我们的日常教学之中。
知识梳理部分
我们学的东西并不多
关键是要能给知识安家
我用两节课帮助学生梳理完课本最后的“期末复习”,看着满满一黑板的板书,学生们都惊讶地说:“这学期我们学的东西真多!”
我说,“是啊,写了满满的一黑板呢。不过呀,你们看到的是表面现象,其实这么多的知识概括起来只分为四个部分”。
随即,我在黑板上补上:数与计算、空间与图形、统计与综合应用。形成如下完整的板书:
数与计算
计数——分数、小数
计量——长度单位(千米)、质量单位(吨)、时间单位(年、月、日)、面积单位(平方米、平方分米、平方厘米)
计算——除法(□□□÷□) 乘法(□□×□□)
空间与图形
旋转 平移 对称 长方形和正方形
统计
平均数
综合应用
解决实际问题
对着四个标题,我说:“我们一年级学到的数学,其实也是这四个部分;我们到了六年级学到的数学还是属于这四个部分。每一个部分的内容每年只是在不断的添加和组合,我想,大家一旦能够在脑子里记住了这样的一个框架,每学期期末了,都对着这个框架进行整理,把知识‘安家’,学再多的内容也不觉得多了。”
在两个多星期的时间中,我一直把这样的板书记录在小黑板上,并挂在教室里,每每和学生复习时,总是不时地带着大家对照。几天下来,学生也开始学着组装,把课本装到心里了。
如在复习计量单位时,我们将以前学过的一些知识与本册中的联系起来,构架了初步的知识脉络图。
我的思考:
1.搭建数学知识框架图——中年级更重要的基础学力
到了中年级,学生的认知结构正在逐步形成,教学中,让学生感觉到数学是整体的(现在的学习就是低年级学习的继续,又是高年级学习的基础),并且联系具体的学习情境“告诉”学生,学数学是怎么回事?学完一学期后怎样能把书“装”在心中?
当然,这样的梳理更有“告诉”的痕迹,但从实际效果来看,学生会逐步在脑子里搭建数学知识框架图。
我想,如果这样的工作从学生一年级学习时就开始渗透、孕伏,到了中年级时给以点拨和强化,到了高年级时放手让他们自己梳理概括,这或许是比学会知识、能做几道题更为重要的基础学力。
重点讲评部分
把你挑选的好题介绍给大家
总复习和平时教学一样,也应该紧扣教材进行。以前每到复习阶段,我总会把数学书从头到尾反复看上好多遍,将整册书中出现的一些重要概念、经典习题、易错题找出来对学生进行强化点拨。
但这样做学生常常并不“领情”,讲评时认真听的只在少数。因为大多数内容在平时的学习中该强调的都已经强调,老师的一厢情愿不能给学生带来什么新鲜感。
近年来,在组织学生复习时,我调整思路,反其道而行,将回家看书作为学生的家庭作业,要求他们边看书边折出数学书上你认为特别需要引起大家关注的20道好题目(或者是最值得注意的知识点)。
到了课堂复习时,我让学生一一汇报自己折出了哪些“好题”,并把你为什么要将它作为“好题”的原因介绍给大家。
今年的复习,我依然采取了这样的做法。对于三年级的孩子而言,这样的要求好像是高了些。第一次的交流时,有学生就选择了一些无关紧要的习题素材点讲述。
比如有的学生将第46页“南京长江大桥长约是7( )”和第50页的“我国古代修筑的长城约长7000( )”放在一起比较,原因是这两题中都有7000。
出现这样的情况,是很自然的。当然,我也会不时地根据学生讲解中质量比较高的,狠狠地表扬一番:“你讲得很好,可以做大家的小老师了,了不起!”
几次练习下来,我发现学生在对自己选择的题目进行讲解时,逐渐能抓住要点了。
比如《年、月、日》单元中的两页内容,有学生讲到了“通常每四年中有一个闰年”的“通常”是指大多数情况,而不是所有情况;有学生讲到判断整百年份是不是闰年,去掉末尾两个0后除以4,不是整百的年份用末尾两位数除以4;还有学生讲到“季度”和“季节”不一样等等。
有的学生甚至能在原来的题目基础上再变化出一两个有难度的新问题。渐次提高的练习中,我感到学生渐渐将课本都“吃进”肚子里了。心中有本,这是学习的大境界。
我的思考:
1.学习数学的高境界应该是变“学会”数学为“会学”数学
三年级的孩子还是比较天真的,他们有很强的表现欲,“看书——挑题——讲述”的过程,其实就是他们在系统回顾学习内容、进行有效整理的过程。
他们所讲述的,虽然大多数就是平时的学习中曾经接受、掌握到的知识、方法、解题要点等,但因为是自主思考、独立研究、亲口表述出来的,也就显得特别清晰,印象深刻。加之老师的恰当引导和热情鼓励,学生所获得的绝不只是书本知识了,还有积极的情感效应,成功的快乐体验,数学学习经验的积累。
考试分析部分
最难的试题不在卷子上,在你的身上
总复习期间,少不了要做些综合练习,每一次考查前,学生都流露出考满分、高分的期盼。可是,他们常常眼高手低,失误不断。
为此,考试分析时我都和学生说:“最难的试题不在卷子上,在你自己身上!”
首先,考试中万万不能犯低级错误,比如将题目看错、数字写错、基本的计算算错、图形周长和面积的公式用反、单位名称看丢、平移时的格数数错等等。
说白了,就是不要把最基本的题目做错。要解决这个问题,只有全神贯注、集中全部的精力来读题、答题、运算。
其次,作为一个会学数学、爱动脑筋的学生,解决每一个实际问题最需要的是有一些基本的策略。因此,在复习中我总是不时强调对解题策略的使用。
比如在解决空间图形的题目时,我渗透画图的方法。
判断:一张长方体纸,长是11厘米,宽是6厘米。将它剪成长是3厘米、宽是2厘米的长方形,最多可以剪11个。()
在学生初练时,总是考虑到长11厘米既不正好是几个3,又不正好是几个2,因此,在操作时一定会出现“零头”,既然有“零头”就不会剪出11个了。因此这道题应该判错。
我让他们动手把图形画出来试一试,最后他们发现,原来是可以正好用完原来的纸而不出现“零头”的。
顺此思路,我又引导学生尝试着用图形来表达课本中一些习题的题意,让大家感受到通过画图来解决问题真是很有学问,很有作用!
我的思考:
1.在中低年级结合具体问题恰当地进行解题策略的渗透,可以提升学习水平
难题并不可怕,可怕的是你没有办法来对付它!虽然解决问题的策略在教材中有专门的单元,而且比较集中在四五六年级,但是,策略的思想是没有阶段的,在中低年级的学习中,结合具体的问题,恰当地对学生进行解题策略的渗透,可以提升他们的学习水平。像画图这样比较直观的方法,是很容易被学生理解和接受的。
我们说,数学学习是一个生长的过程,要想看到大树,我们得先埋下种子,或者说,当你开始培育树苗的时候,首先想想我们在什么时候播种了种子。
这样的设想是不是太具有超越性而不切学生学习的实际呢?其实不然,我遇到过这样一道提高题:
修一条水渠,修了8天以后超过中点120米。剩下的按原来的速度继续修,6天可以完成,这条公路长多少米?
对三年级的学生来说,“中点”的意思是有些能意会的,但绝对难以和数量关系挂上钩。但从测试情况看,全班有近三分之一的学生解答正确。通过对他们解答过程的了解,我发现不少孩子还真是依靠了画图来分析的。
学生们的图远没有我的这么精致、精确,但是,从他们自己绘画的图中,他们悟出了数量关系、悟出了算法,我感到莫大的欣慰。
- END -
文章题目、内容源自《让复习课充满着“生长”的力量——三年级下册期末总复习手记》
已获作者授权
作者丨许卫兵
编辑丨陈薇
“年度星教师300人”邀你推荐!
后台对话框回复关键词“星教师”
获取“推荐表”
欢迎老师加入我们的读者群
你的专属精品教育生活
点击图片或阅读原文,一键订阅